
Function pointers
Lecture 09.01

Outline

• Function pointers

• Arrays of function pointers

• Passing function pointers as parameters

• Sorting with qsort

We have met function pointers
before
struct sigaction contains following members:

• void (*sa_handler)(int)

• sigset_t sa_mask

• int sa_flags

Pointer to a signal-catching function

Set of signals to be blocked during
execution of the signal handling function

Special flags

Object-oriented programming in C:
Duck simulation

• Imagine that we are writing a simulation for a game about
ducks in a lake

• Each duck behaves differently, it has its own quack and fly
behavior

Defining ducks
typedef enum {

FLY_WINGS, NO_FLY

} FlyType;

typedef enum {

QUACK, SILENCE

} QuackType;

typedef struct duck{

char * name;

FlyType fly_type;

QuackType quack_type;

} Duck;

What is an
advantage of using
enum here?

Implementing different fly and
quack behaviors
void quack () {

puts ("Quack quack");

}

void mute_quack () {

puts ("<<Silence>>");

}

void fly_wings () {

puts ("I am flying with the wings!");

}

Adding some ducks

Duck ducks [2];

ducks[0].name = "Mallard";

ducks[0].fly_type = FLY_WINGS;

ducks[0].quack_type = QUACK;

ducks[1].name = "Domestic";

ducks[1].fly_type = NO_FLY;

ducks[1].quack_type = QUACK;

for (i=0; i< 2; i++){

simulate_duck (ducks[i]);

}

Implementing simulate_duck
void simulate_duck (Duck * duck){

printf ("\nI am a %s Duck\n", duck->name);

switch (duck->fly_type) {

case FLY_WINGS:

fly_wings ();

break;

default:

no_fly();

}

switch (duck->quack_type) {

…

}

…

}
Code in ducks.c

We want to add new types of fly
and quack
• The rubber duck: squeaks instead quacking

• The wooden duck: cannot fly

• The space duck: flies with the rocket

• …

We need to change the code

• The code becomes too long

• We need to introduce new types into each enum

• We need to update switch statements with every new
case

• Is there a better way of doing it in C?

• Yes, with function pointers

• Every function name is a
pointer to the function: refers
to the piece of code in memory

• Function names are also
pointer variables

• When you create function

swim (int speed),

you are also creating a

pointer variable called swim

that contains the address of the

function

Buffer

Code

Constants

Globals

HEAP

Stack

How to declare a function pointer

• It’s easy to declare pointers in C:

• If a data type is int, you declare a pointer with int *

• Unfortunately, C doesn’t have a function data type, so you
can’t declare a function pointer with anything like function *

int *a;

function *f;

This declares a pointer

…but this won’t declare a
function pointer

Function datatype includes many
different types

• C does NOT have a function data type because there’s not

just one type of function

• When you create a function, you vary a lot of things (the

return type or the list of parameters)

• That combination of things defines the type of the function:

int swim (int speed)

{

...

}

char** album_names

(char *artist, int year) {

...

}

Declaring variable of type
function pointer
int (*swim_fp)(int);

swim_fp = swim;

swim_fp(4);

char** (*names_fp)(char*,int);

names_fp = album_names;

char** results = names_fp(“Elton John", 1972);

This will create a variable called swim_fp
that can store the address of the swim()
function.

This is just like calling swim(4)

We can use a variable of type
function pointer:
• Assign different values to this variable: different functions

with the same signature

• Add it to the array of function pointers

• Pass it as parameters to other functions

Back to ducks
void simulate_duck (Duck * duck){

void (*fly_fp)(void);

switch (duck->fly_type) {

case FLY_WINGS:

fly_fp = fly_wings;

break;

case ROCKET:

fly_fp = fly_rocket;

break;

default:

fly_fp = no_fly;

}

fly_fp();

} Code in ducks_fp.c

But how does it help to
shorten the code?

So far we have the same
number of cases, and we
need to add new cases
each time we extend a set
of fly types

An array of function pointers

• The trick is to create an array of function pointers that
matches different fly types

• If we had an array of possible fly behaviors we could use is
like this:

fly_behaviors[] = {fly_wings, fly_rocket, no_fly};

fly_behaviors [1];

• Instead, for array of function pointers we use:

void (*fly_behaviors[])() = {fly_wings, fly_rocket, no_fly};

fly_behaviors [1] ();

Now we can call the function at
the corresponding array index
void (*fly_behaviors[])() = {fly_wings, fly_rocket, no_fly};

void simulate_duck (Duck * duck){

printf ("\nI am a %s Duck\n", duck->name);

fly_behaviors [duck->fly_type] ();

quack_behaviors [duck->quack_type] ();

}

Remember that each
enum value is actually an
int and it starts from 0?

One line of code
replaces all the
cases and we do
not need to
change this code
to add new
behaviors

Storing function pointers as
“methods” of a struct
typedef struct duck{

char * name;

void (*fly) (void);

void (*quack) (void);

} Duck;

Code in ducks_object.c

Assign corresponding ‘method’ to
the ‘object’ when it is created
Duck ducks [4];

ducks[0].name = "Mallard";

ducks[0].fly = fly_wings;

ducks[0].quack = quack;

ducks[1].name = "Domestic";

ducks[1].fly = no_fly;

ducks[1].quack = quack;

ducks[2].name = "Rubber";

ducks[2].fly = no_fly;

ducks[2].quack = squeak;

ducks[3].name = "Wooden";

ducks[3].fly = no_fly;

ducks[3].quack = mute_quack;

And simulate object-oriented
programming in C ☺
void simulate_duck (Duck * duck){

duck->fly();

duck->quack();

}

fly is a function pointer that
points to one of the following
real functions:
fly_wings
no_fly
fly_rocket

Recognizing function pointers

Return type (* Pointer variable)(Param types)

char** (*names_fp) (char*, int);

Return type Pointer variable Param types

This is the name
of the variable
you’re declaring

Problem: sorting things in C
(typed language)
• Lots of programs need to sort data.

• If the data is not a set of numbers, which have their own
natural order – how do you sort them?

• Imagine you have a set of people. How would you put them
in order? By height? By intelligence? By hotness?

• How could we write a general sort function which will sort
any type of data?

Use function pointers to set the
order
• C Standard Library function qsort:

qsort (void *array,

size_t length,

size_t item_size,

int (*compar)(const void *, const void *));

A pointer to a comparator
function, which will be
used to determine the
order of 2 pieces of data

comparator returns:
• The qsort() function compares pairs of values, and if they

are in the wrong order, it will switch them

• The comparator function will tell qsort() which order a pair
of elements should be in

• It does this by returning one of three different values:

Positive number

Negative number

Zero

a b

Exercise: implement sorting of the
following arrays
• Array of ints:

int scores[] = {543,323,32,554,11,3,112};

• Array of C strings:

char *names[] = {"Karen", "Mark", "Brett", "Molly"};

• Array of rectangles:

Rectangle rectangles [] = {{3,5}, {4,4},{1,18}};

Comparator example 1/3: integers
Comparator function: compare_scores()

• The first thing you need to do is get the integer values from
the pointers:

int a = *(int*)score_a;

int b = *(int*)score_b;

• Then you need to return a positive, negative, or zero value,
depending on whether a is greater than, less than, or equal
to b:

return a - b;

• And this is how you ask qsort() to sort the array:

qsort(scores, 7, sizeof(int), compare_scores);

Comparator example 2/3:
Rectangles
int compare_rectangles(const void* a, const void* b){

Rectangle ra = *(Rectangle*)a;

Rectangle rb = *(Rectangle*)b;

int area_a = (ra.width * ra.height);

int area_b = (rb.width * rb.height);

return area_a - area_b;

}

Recap: Array of strings: char **

200 400 600 800 900

char ** arr;

4 8 12 16 20

4

a

a

a

a

a

Ø

b

b

b

Ø

d

d

d

d

d

Ø

c

Ø

x

x

x

x

Ø

200 400 600 800 900

Type: char **

Comparator example 3/3: strings

int compare_strings (const void* a, const void* b) {

char** aPP = (char**)a;

char** bPP = (char**)b;

char* aP = *aPP;

char* bP = *bPP;

return strcmp(aP, bP);

}

